Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Accurate assessment of leaf functional traits is crucial for a diverse range of applications from crop phenotyping to parameterizing global climate models. Leaf reflectance spectroscopy offers a promising avenue to advance ecological and agricultural research by complementing traditional, time-consuming gas exchange measurements. However, the development of robust hyperspectral models for predicting leaf photosynthetic capacity and associated traits from reflectance data has been hindered by limited data availability across species and environments. Here we introduce the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. The GSTI repository currently encompasses over 7500 observations from 397 species and 41 sites gathered from 36 published and unpublished studies, thereby offering a key resource for developing and validating hyperspectral models of leaf photosynthetic capacity. The GSTI database is developed on GitHub (https://github.com/plantphys/gsti, last access: 4 January 2026) and published to ESS-DIVE https://doi.org/10.15485/2530733, Lamour et al., 2025). It includes gas exchange data, derived photosynthetic parameters, and key leaf traits often associated with traditional gas exchange measurements such as leaf mass per area and leaf elemental composition. By providing a standardized repository for data sharing and analysis, we present a critical step towards creating hyperspectral models for predicting photosynthetic traits and associated leaf traits for terrestrial plants.more » « lessFree, publicly-accessible full text available January 9, 2027
-
Abstract Increasing drought frequency and severity in a warming climate threaten forest ecosystems with widespread tree deaths. Canopy structure is important in regulating tree mortality during drought, but how it functions remains controversial. Here, we show that the interplay between tree size and forest structure explains drought-induced tree mortality during the 2012-2016 California drought. Through an analysis of over one million trees, we find that tree mortality rate follows a “negative-positive-negative” piecewise relationship with tree height, and maintains a consistent negative relationship with neighborhood canopy structure (a measure of tree competition). Trees overshadowed by tall neighboring trees experienced lower mortality, likely due to reduced exposure to solar radiation load and lower water demand from evapotranspiration. Our findings demonstrate the significance of neighborhood canopy structure in influencing tree mortality and suggest that re-establishing heterogeneity in canopy structure could improve drought resiliency. Our study also indicates the potential of advances in remote-sensing technologies for silvicultural design, supporting the transition to multi-benefit forest management.more » « less
-
Abstract Aim Understanding the considerable variability and drivers of global leaf photosynthetic capacity [indicated by the maximum carboxylation rate standardized to 25°C ( V c,max25 )] is an essential step for accurate modelling of terrestrial plant photosynthesis and carbon uptake under climate change. Although current environmental conditions have often been connected with empirical and theoretical models to explain global V c,max25 variability through acclimatization and adaptation, long‐term evolutionary history has largely been neglected, but might also explicitly play a role in shaping the V c,max25 variability. Location Global. Time period Contemporary. Major taxa studied Terrestrial plants. Methods We compiled a geographically comprehensive global dataset of V c,max25 for C 3 plants ( n = 6917 observations from 2157 species and 425 sites covering all major biomes world‐wide), explored the biogeographical and phylogenetic patterns of V c,max25 , and quantified the relative importance of current environmental factors and evolutionary history in driving global V c,max25 variability. Results We found that V c,max25 differed across different biomes, with higher mean values in relatively drier regions, and across different life‐forms, with higher mean values in non‐woody relative to woody plants and in legumes relative to non‐leguminous plants. The values of V c,max25 displayed a significant phylogenetic signal and diverged in a contrasting manner across phylogenetic groups, with a significant trend along the evolutionary axis towards a higher V c,max25 in more modern clades. A Bayesian phylogenetic linear mixed model revealed that evolutionary history (indicated by phylogeny and species) explained nearly 3‐fold more of the variation in global V c,max25 than present‐day environment (53 vs. 18%). Main conclusions These findings contribute to a comprehensive assessment of the patterns and drivers of global V c,max25 variability, highlighting the importance of evolutionary history in driving global V c,max25 variability, hence terrestrial plant photosynthesis.more » « less
-
Restoring vegetation in degraded ecosystems is an increasingly common practice for promoting biodiversity and ecological function, but successful implementation is hampered by an incomplete understanding of the processes that limit restoration success. By synthesizing terrestrial and aquatic studies globally (2594 experimental tests from 610 articles), we reveal substantial herbivore control of vegetation under restoration. Herbivores at restoration sites reduced vegetation abundance more strongly (by 89%, on average) than those at relatively undegraded sites and suppressed, rather than fostered, plant diversity. These effects were particularly pronounced in regions with higher temperatures and lower precipitation. Excluding targeted herbivores temporarily or introducing their predators improved restoration by magnitudes similar to or greater than those achieved by managing plant competition or facilitation. Thus, managing herbivory is a promising strategy for enhancing vegetation restoration efforts.more » « less
-
Abstract Plant microbiomes are known to influence host fitness and ecosystem functioning, but mechanisms regulating their structure are poorly understood.Here, we explored the assembly mechanisms of leaf epiphytic and endophytic bacterial communities using a subtropical forest biodiversity experiment.Both epiphytic and endophytic bacterial diversity increased as host tree diversity increased. However, the increased epiphytic diversity in more diverse forests was driven by greater epiphytic diversity (i.e. greaterα‐diversity) on individual trees, whereas the increased endophytic diversity in more diverse forests was driven by greater dissimilarity in endophytic composition (i.e. greaterβ‐diversity) among trees. Mechanistically, responses of epiphytes to changes in host diversity were consistent with mass effects, whereas responses of endophytes were consistent with species sorting.Synthesis. These results provided novel experimental evidence that biodiversity declines of plant species will lead to biodiversity declines of plant‐associated microbiomes, but the underlying mechanism may differ between habitats on the plant host.more » « less
An official website of the United States government
